Martin TANCER

Hardness of embedding simplicial complexes in \mathbb{R}^d

Abstract. Let $\text{EMBED}_{k\to d}$ be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k, does there exist a (piecewise linear) embedding of K into \mathbb{R}^d ? Known results easily imply polynomiality of $\text{EMBED}_{k\to 2}$ (k = 1, 2; the case k = 1, d = 2 is graph planarity) and of $\text{EMBED}_{k\to 2k}$ for all $k \geq 3$ (even if kis not considered fixed).

The main result presented in the talk is NP-hardness of $\text{EMBED}_{2\to4}$ and, more generally, of $\text{EMBED}_{k\to d}$ for all k, d with $d \ge 4$ and $d \ge k \ge (2d-2)/3$. We also show that the celebrated result of Novikov on the algorithmic unsolvability of recognizing the 5-sphere implies that $\text{EMBED}_{d\to d}$ and $\text{EMBED}_{(d-1)\to d}$ are undecidable for each $d \ge 5$. (This is joint work with Jiří Matoušek and Uli Wagner.)