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Unimodal Category

Definition (Baryshnikov & Ghrist, 2007)

Continuous function u : X → [0,∞) is unimodal if u−1[c,∞) are
contractible for 0 < c ≤ M and empty for c > M.

Definition (Baryshnikov & Ghrist, 2007)

Let p ∈ (0,∞). Then

ucatp(f ) = min{n ∈ N0 | f = (
n∑

i=1

up
i )

1
p ,ui unimodal}

and

ucat∞(f ) = min{n ∈ N0 | f = max
1≤i≤n

ui ,ui unimodal}.
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Definitions

Total variation:

V (f ; [a,b]) = sup
n∑

i=1

|f (xi)− f (xi−1)|,

Positive variation:

V+(f ; [a,b]) = sup
n∑

i=1

max{0, f (xi)− f (xi−1)},

Negative variation:

V−(f ; [a,b]) = sup
n∑

i=1

max{0, f (xi−1)− f (xi)}.
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Jordan Decomposition

Theorem
Suppose f : J → R is of bounded variation. Then f can be
expressed as the difference f = g − h of two increasing
functions g,h : J → R.

Proof.
Without loss of generality, limx→−∞ f (x) = 0. Now simply take
g(x) = V+(f ; J ∩ (−∞, x)) and h(x) = V−(f ; J ∩ (−∞, x)).
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Forced-Max Condition

Definition (Baryshnikov & Ghrist, 2007; G, 2017)

An interval (x , y) is called forced-max (with respect to f ) if

V−(f ; (x , y)) > f (x).

Let M(f ) be the maximum number of disjoint forced-max
intervals (w.r.t. f ).

Theorem (Baryshnikov & Ghrist, 2007; G, 2017)

If f : R→ [0,∞) is compactly supported, then

ucat(f ) = M(f )

holds.
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Decomposition Theorem

Theorem (Baryshnikov & Ghrist, 2007; G, 2017)

A minimal unimodal decomposition of f : R→ [0,∞) is given by

x0 = −∞,

xi = inf{x | V−(f ; (xi−1, x)) > f (xi−1)}, i = 1, . . . ,n,
xn+1 =∞.

and

ui(x) =


0; x ≤ xi−1,

g(x)− g(xi−1); x ∈ [xi−1, xi ],

h(xi+1)− h(x); x ∈ [xi , xi+1],

0; x ≥ xi+1.
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Decomposition Theorem
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Monotonicity Conjecture

Conjecture (Baryshnikov & Ghrist, 2007)

Suppose f : X → [0,∞) and 0 < p1 < p2 ≤ ∞. Then
ucatp1(f ) ≤ ucatp2(f ).
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Proof for R and S1

Theorem (G, 2017)

Suppose X = R or X = S1, f : X → [0,∞) and
0 < p1 < p2 ≤ ∞. Then ucatp1(f ) ≤ ucatp2(f ).

Proof.
Using the Karamata inequality, we can show

V−(f p1 ; [a,b]) > f (a)p1 =⇒ V−(f p2 ; [a,b]) > f (a)p2 .
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Morse-Smale Graph = Tree =⇒ Monotonicity

Theorem (G, 2017)

If f : R2 → [0,∞) is nonresonant and Morse-Smale graph of f is
a tree, then ucatp(f ) is monotone in p.

Proof.
For functions of this kind, ucat has a characterization using
path values (Hickok, Villatoro & Wang, 2012).
Let g = f p1 and p = p2

p1
.

If ucat(g) ≤ n, then
∑n

i=1 PV(xi , x) ≥ g(x).
Using norm inequalities,

∑n
i=1 PV(xi , x)p > g(x)p.

Conclude that ucat(gp) ≤ n.
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(Homological) Nerve Theorem

Theorem (Borsuk, 1948)
If V is an open cover of a paracompact space Y such that every
nonempty intersection of finitely many sets in V is contractible,
then Y is homotopy equivalent to the nerve N (V).

Theorem (Leray, 1945)
If U is a cover by subcomplexes of a simplicial complex X such
that every nonempty intersection of finitely many sets in U is
acyclic, then

H∗(X ) ∼= H∗(N (U)),

where N (U) is the nerve of U .
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Filtrations

Filtration is given by f : X → Z.

Persistent homology:

H0(X ) : . . .→ k→ k→ k→ k→ . . .

H1(X ) : . . .→ k→ k
3 → k

2 → k→ . . .
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Persistence Module

Persistent homology can be understood as a functor
V : (Z,≤)→ Vect or a k[t ]-module.

Isomorphic categories:

Vect(Z,≤) ∼= Modk[t]
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Interleaving

Filtrations f ,g : X → Z with ‖f − g‖∞ ≤ ε =⇒ their homologies
are ε-interleaved k[t ]-modules.

Definition
k[t ]-modules M and N are ε-interleaved if there is a pair of
ε-morphisms f : M ε→ N and g : N ε→ M such that

g(f (m)) = t2εm and f (g(n)) = t2εn.

In this case, we write: M ε∼ N.

This yields a metric between isomorphism classes of modules:

dI(M,N) = min{ε ∈ N0 | M
ε∼ N}.
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Approximate Nerve Theorem

Theorem (G & Škraba, 2016)

Let D = dimN (U), ∆ = dim X and Q = min(D,∆).
If U is an ε-acyclic cover of X and D <∞, we have

H∗(X )
2(Q+1)ε∼ H∗(N ).

To prove this, use the Mayer-Vietoris spectral sequence.

Naively, we obtain H∗(X )
(4D+2)ε∼ H∗(N ).

To prove tight bound, we introduce left and right interleavings.
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Summary

For functions on the real line or the circle, the notion of
ucat is intimately connected to the notion of total variation.
The monotonicity conjecture does not hold in general.
Nontrivial cycles in superlevel sets can be used to
construct counterexamples.
For approximately acyclic covers, there is an approximate
nerve theorem. The approximation bounds can be
precisely estimated.
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Open Questions

Is there a cohomological approach to ucat?
Does monotonicity hold for multimodal functions?
In what ways can interleavings be decomposed into left
and right interleavings?

Thank you for your attention!
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